EFFECTS OF PILE DRIVING ON EISH AND WILDLIFE

Jim Laughlin

Washington State Dept of Transportation

PO Box 330310, NB82-138

15700 Dayton Ave. N

Seattle, WA 98133

Tel: 206/440-4643

laughlj@wsdot.wa.gov

Hydroacoustics Background

- Underwater pile driving impacts to fish began to appear around 1995 in California and B.C.
- Decibels: 20 log (p/p_{ref})
 - Airborne noise: $ref = 20 \mu Pa$.
 - Underwater noise: $ref = 1 \mu Pa$.

Impact Driving Waveform

Ruptured Swim Bladder (Surf Perch)

Internal Bleeding

Sub-Lethal Effects

- Pile driving may damage inner ear (hair cells)
- Ear damage may be short term or permanent
- Hearing impairments may possibly increase predation
- Hearing impairments may possibly alter reproduction or feeding
- Not well studied

Normal Fish Hair Cells

Damaged Fish Hair Cells (180-190 dB)

Comparison of Hearing Thresholds of Representative Fish Species to Hourly Equivalent Pile Driving Sound Levels Measured at Benicia

Sound Pressure Peak dB?

Piles (180 dB_{peak} – NOAA threshold)

PILE TYPE	dB _{peak} re: 1 μ Pa
H-piles (steel)	150 - 160
Timber pile (diameter variable)	160 - 177
24-inch dia. concrete pile	183 - 193
12-inch dia. steel pile	177 – 190
14-inch dia. steel pile	195 – 200
24-inch dia. steel pile	202 - 210

Vibratory driving 10-20 dB re: 1 μPa lower

- Sound Pressure Peak dB?
- Rise Time?

- Sound Pressure Peak dB?
- Rise Time?
- Root Mean Square (RMS)?

- Sound Pressure Peak dB?
- Rise Time?
- Root Mean Square (RMS)?
- Sound Exposure Level (SEL)?

Representative Pile Strike at 10 meters - Timber (12 inches) w/Drop Hammer Figure b. Narrow Band Freguency Spectra Figure a. Waveform 1.00E+09 180 170 5.00E+08. Spectral Sound Pressure (dB ne 1µPa) Sound Pressure (µPa) 160 150 140 -5.00E+0B 130 120 -1.00E+09. 0.02 0.08 0.10 0.14 2400 0.00 0.04 0.06 0.12 800 1600 3200 4000 4800 Time (sec) Frequency (Hz.) Figure c. Accumulation of Sound Energy Figure d. Sound Pressure and Sound Energy Levels 180 Signal Analysis Sound Pressure / Energy Levels Timber - 12 inch Diameter Peak RMSeow* SEL Sound Energy Accumulation (dB re 1µPa^2 sec) 177 165 157 Drop 170 160 Typical Sound Pressure / Energy Levels Throughout Drive RMS35ms** Peak 150 Sound Level Meter Measurement 175 165 *Impulse averaged over 90% of accumulated energy (5% to 95% 0.000 0.020 0.040 0.0800.100 0.120 0.140

**Standard 35 msec "impulse" RMS time window

Time (sec)

Comparison with Pile Driving Signals at 10 Meters

Figure B-1: Comparison of received SEL at 10 meters with the recommended guidance for physical injury and 50% mortality

- Sound Pressure Peak dB?
- Rise Time?
- Root Mean Square (RMS)?
- Sound Exposure Level (SEL)
- Acoustical Particle Velocity

Sound Pressure & Particle Velocity

- Humans hear Sound Pressure.
- Most fish hear Acoustic Particle Velocity also known as Sound Intensity:
- I = pV
- Intensity also "points" in the direction of sound propagation

MITIGATION

- Bubble Curtain 5 dB to 15 dB reduction
- Friday Harbor: \$4,000 per pile

MITIGATION

- Bubble Curtain
- Sleeves 10 dB to 20 dB reduction
 Cost slightly higher than bubble curtain

CONFINED BUBBLE CURTAIN (TYPE II)

SEA FLOOR

MITIGATION

- Bubble Curtain
- Sleeves
- Dry Coffer Dams
- Timing
- Driving above the MHHW line

Midwater Received Levels (Peak)

Midwater Received Levels (Peak)

Preliminary Conclusions

- Preferred hammer type: Diesel
- Bubble curtain with one ring at bottom
- Need more analysis

CURRENT WSDOT ACTIVITIES

2005 PROJECTS

- SR 24 Bridge Replacement (Yakima River)
- Eagle Harbor Ferry Maintenance Facility
- Anacortes Ferry Terminal
- Winslow Ferry Terminal
- Hood Canal Bridge

2006 PROJECTS

- SR 202
- Mukilteo Test Piles (Concrete)

WHAT'S NEXT

- Gather more information on WSDOT pile driving efforts.
- Work with services to determine appropriate criteria (performance based not prescriptive)
- Research
 - NCHRP funding (\$450K)
 - WSDOT Particle Velocity sensor funding (\$150K)
 - WSDOT Data Analysis Funding (\$40K)
 - Pooled Funding (\$500K)

Jim Laughlin

- Washington State Department of Transportation
- (206) 440-4643
- Laughlj@WSDOT.WA.GOV